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ABSTRACT

Knowledge graphs serve as a powerful tool to boost model perfor-
mances for various applications covering computer vision, natural
language processing, multimedia data mining, etc. The process of
knowledge acquisition for human is multimodal in essence, cov-
ering text, image, video and audio modalities. However, existing
multimodal knowledge graphs fail to cover all these four elements
simultaneously, severely limiting their expressive powers in per-
formance improvement for downstream tasks. In this paper, we
propose TIVA-KG, a multimodal Knowledge Graph covering Text,
Image, Video and Audio, which can benefit various downstream
tasks. Our proposed TIVA-KG has two significant advantages over
existing knowledge graphs in i) coverage of up to four modali-
ties including text, image, video, audio, and ii) capability of triplet
grounding which grounds multimodal relations to triples instead of
entities. We further design a Quadruple Embedding Baseline (QEB)
model to validate the necessity and efficacy of considering four
modalities in KG. We conduct extensive experiments to test the
proposed TIVA-KG with various knowledge graph representation
approaches over link prediction task, demonstrating the benefits
and necessity of introducing multiple modalities and triplet ground-
ing. TIVA-KG is expected to promote further research on mining
multimodal knowledge graph as well as the relevant downstream
tasks in the community. TIVA-KG is now available at our website:
http://mn.cs.tsinghua.edu.cn/tivakg.
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1 INTRODUCTION

Knowledge graph (KG) is an effective way to explicitly store and
utilize knowledge, which supports and boosts model performances
in various domains ranging from computer vision, natural lan-
guage processing and multimedia analysis. Typically, KG encodes
knowledge in the form of triples <head, relation, tail>, forming a
multi-relation heterogeneous graph. In this paper, "triple" is in-
terchangeably used with "triplet". With the increasing amount of
multimodal data becoming publicly available for various multi-
media tasks, multimodal knowledge graph (MMKG), i.e., KG with
multimodal information associated with nodes, has attracted more
and more attention from the research community. There have been
a few works that utilize MMKG as external knowledge sources for
multimodal tasks, such as Richpedia [35], MMKG [19] and Visu-
alSem [1]. This is consistent with the process of knowledge acqui-
sition for human, which is multimodal in essence covering text,
image, video and audio.

However, there exist twomajorweaknesses in the currentMMKG
works.

• Existing works on MMKG only cover at most two modali-
ties simultaneously, mostly covering text and image, other
work such asWASABI [4] contains audio and text, and Video-
Graph [26] contains video and text. These works fail to cover
all four elements of text, image, video and audio simultane-
ously, severely limiting their expressive powers in perfor-
mance improvement for downstream tasks.

• Whilst multiple entities and relations can be combined to ex-
press a complex symbolic concept, multimodal data grounded
to them cannot be naturally combined. In order to find suit-
able multimodal knowledge for such a complex symbolic
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concept, triplet grounding is beneficial [41], which grounds
multimodal data to whole triples instead of single entities.
For example, a dog is able to bark should ideally be charac-
terized by a triple of entities <Dog, IsAbleTo, Bark> as a
whole to reflect the symbolic knowledge, rather than being
characterized through three separate entities representing
Dog, and Bark independently. Nevertheless, the capability
of triplet grounding has been largely ignored by existing
works.

To tackle these issues, in this paper we propose TIVA-KG, a mul-
timodal Knowledge Graph covering Text, Image, Video and Audio
simultaneously, as well as providing the capability of triplet ground-
ing. To the best of our knowledge, TIVA-KG is the first general KG
simultaneously including text, image, video and audio modalities
together.With the novel design of associating multimodal attributes
with both entities and triples, our proposed TIVA-KG is able to con-
duct triplet grounding that captures symbolic knowledge carried
in KG, e.g., entity(Dog)−relation(IsAbleTo)→ entity(Bark). Our
design of triplet grounding is able to boost the ability of expressing
both specific and complicated concepts when utilizing multimodal
information of KG. Take another triple <Dog, CapableOf, Run>
illustrated in Figure 1 as an example, i) entity Dog is characterized
by multimodal data which demonstrate dogs sitting or standing, ii)
entity Run is characterized with multimodal data describing the
scenario of human running, and iii) triplet <Dog,CapableOf, Run>
is grounded via multimodal data indicating the running dogs.

Dog Run
Capable 

Of

Entity

Triplet

Multimodal Data

Figure 1: An example of entity grounding for Dog (blue),

entity grounding for Run (yellow) and triplet grounding for

<Dog, CapableOf, Run> (purple).

To construct TIVA-KG, we first extract a subgraph from Concept-
Net [32] focusing on general knowledge, which serves as the initial
skeleton of TIVA-KG. Next, we build up an automatic crawler to
acquire data of image, video and audio modalities through caption-
based approach [41] which generates a natural language description
for each entity and triplet to search from Google and FreeSound.
The data crawled from the web can be further processed into feature
vectors for subsequent analysis over TIVA-KG.

Besides, we design aQuadruple Embedding Baseline (QEB)model
to integrate information from text, image, video and audio modal-
ities as well as triplet grounding for link prediction on KG. We
conduct extensive experiments through comparing both existing
unimodal and multimodal approaches with our QEB model, as well
as benchmarking the link prediction task on our TIVA-KG. Ex-
perimental results show significant performance increase of QEB

Table 1: Comparison between TIVA-KG and other public mul-

timodal knowledge graphs (MMKGs)

MMKG

modality multimodal

knowledgetext image video audio

IMGpedia ! ! % % entity, relation
ImageGraph ! ! % % entity
MMKG ! ! % % entity
Richpedia ! ! % % entity, relation
VisualSem ! ! % % entity
TIVA-KG ! ! ! ! entity, triplet

on TIVA-KG and demonstrate the importance of both two novel
features of TIVA-KG.

In summary, this work makes the following contributions:
• We introduce TIVA-KG, a new large-scale multimodal KG
containing texts, images, videos and audio together. To the
best of our knowledge, TIVA-KG is the first general KG that
covers four modalities simultaneously.

• We propose triplet grounding on multimodal KG, which is
able to ground symbolic knowledge on TIVA-KG, thus sig-
nificantly boosting the expressiveness of knowledge repre-
sentation over KG with multimodal information.

• We design Quadruple Embedding Baseline (QEB), a new base-
line model to exploit text, image, video and audio modalities
simultaneously for multimodal knowledge representation
over TIVA-KG.

• We conduct extensive experiments on TIVA-KG and compare
our QEB with several state-of-the-art approaches ranging
from unimodal to bimodal setting, demonstrating the advan-
tages of QEB over existing methods as well as the necessity
of quadruple modalities and triplet grounding.

2 RELATEDWORKS

ExistingMultimodal KnowledgeGraphs. IMGpedia [6] is one of
the first attempts to collect images and form a KG, containing only
image modality. MMKG [19] follows a more traditional philosophy,
enriching DBPEDIA, YAGO and Freebase-15k with numeric literals
and image information to form an MMKG, which also provides an
early example of typical practice for MMKG construction. Whereas
Richpedia [35] pays more attention to improve data quality and
filter images through a distinctive retrieval model, VisualSem [1], as
a more recent work, simultaneously builds a novel image filtering
pipeline and provides multimodal retrieval models that retrieve
entities given images and sentences. With all these topics explored,
however, more attention can still be paid to the combination of more
(e.g., quadruple) modalities [39] together and triplet grounding.
Table 1 shows a comparison between our proposed TIVA-KG and
existing MMKGs.
Link Prediction on KG. MMKGs serve as a knowledge base for a
wide range of downstream tasks. These tasks can be classified into
two categories: in-KG tasks and out-of-KG tasks [17, 29], depending
on whether they require additional labeled data or not [41]. In-KG
tasks refer to tasks that are conducted entirely within the scope of
the MMKG, and there are three primary types: knowledge graph
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completion (KGC), relation discovery and entity discovery [12].
KGC aims to expand existing KGs by predicting new links between
entities based on the available information in the MMKG. Relation
discovery and entity discovery, on the other hand, are focused
on extracting new knowledge from text. To evaluate the quality of
TIVA-KG, we focus on the performance of MMKG on link prediction
tasks.

In recent years, there has been a surge of research in deep
learning-based approaches for link prediction, which learn low-
dimensional embeddings to represent entities and relations. One
common approach is to define a scoring function 𝜙 (h, r, t) to esti-
mate the plausibility of a given fact using the embeddings of its
entities and relations [27].

Some models use tensor decomposition to learn these embed-
dings, with DistMult [37] and ComplEx [34] being popular exam-
ples. These models force relation embeddings to be diagonal matri-
ces, which reduces the number of parameters andmakes them easier
to train. SimplE [13] also uses diagonal relation embeddings, but
can model asymmetric relations by incorporating inverse-direction
information. Analogy [18] adds constraints on a general bilinear
scoring function, inspired by analogical structures. While HolE [23]
computes circular correlation between head and tail entity embed-
dings to reduce time and space complexity. TuckER [2] uses the
Tucker decomposition [14] to factorize a tensor into a set of vectors
and a shared core. Geometric models utilize geometric transfor-
mations in the latent space to interpret relations, with TransE [3]
being a popular example. TransE requires the tail embedding to lie
close to the sum of the head and relation embeddings, but suffers
from limitations on handling one-to-many, many-to-one and many-
to-many relations. STransE [22] pre-multiplies head and tail embed-
dings with relation-specific matrices to address these limitations.
CrossE [40] combines element-wise products with triple-specific
embeddings, while RotatE [33] allows for modeling relational pat-
terns such as symmetry/anti-symmetry, inversion, and composition
through rotations in a complex latent space. TorusE [5] projects
points from the Euclidean space onto a torus to handle the transla-
tional constraint of TransE.

In medicine related research fields, interpretability of link pre-
diction results is critical, and rule-based methods have received
attention. Rule mining algorithms [7, 8, 15, 20] often rely on preset
metrics like confidence and support, but suffer from limitations in
relying on discrete counting. Neural-LP [38] and DRUM [28] com-
bine parameter and structure learning of first-order logical rules
in an end-to-end differentiable model. RNNLogic [25] treats logic
rules as a latent variable and trains a rule generator and reasoning
predictor simultaneously, under the EM framework.

Furthermore, there exists work [21] which tries to design models
capable of utilizing multimodal knowledge to get better perfor-
mance on MMKGs. But there have been no existing models that
can directly utilize triplet multimodal knowledge, motivating us to
propose a new baseline method capable of tackling this problem.

3 TIVA-KG: KNOWLEDGE GRAPHWITH

TEXT, IMAGE, VIDEO AND AUDIO

In this section, we conceptually discuss the establishment of TIVA-
KG with respect to sources and ontology. TIVA-KG focuses on

general knowledge, e.g., animals, social relationships and geology
etc., which is gathered from multiple sources and represented via
entities and triplets. These entities and triplets in TIVA-KG will be
aligned with multimodal information through our construction. We
also present the detailed statistics of the proposed TIVA-KG and
visualize its subgraph with 30K entities.

3.1 Sources

The knowledge carried in TIVA-KG contains two types of informa-
tion,

(1) Structural and textual information associated with the basic
topology.

(2) Image, audio and video information associated with entities
and triplets.

The basic topology of TIVA-KG is extracted fromConceptNet [32],
a publicly available single modality knowledge graph carrying gen-
eral knowledge via texts, which is gathered from multiple sources.
As such, by inheriting the fundamental topology from ConceptNet,
TIVA-KG naturally benefits in the same quality and diversity in
terms of structural and textual information with ConceptNet.

In addition, TIVA-KG further incorporate multimodal data cover-
ing images, videos and audio from Google and Freesound through a
web crawler specifically designed for TIVA-KG. Given a natural lan-
guage description, our web crawler is able to retrieve multimodal
information by utilizing search engines of Google and Freesound.
The retrieved results from the search engines are ranked, and the
top results will be picked up to guarantee that TIVA-KG receives
highly relevant results with high possibility.

Figure 2: TIVA-KG ontology

3.2 Ontology

Upon inheriting the advantages of ConceptNet, our proposed TIVA-
KG is able to further carry information from image, video and audio
modalities, as well as being capable of direct grounding on triplet
<entity, relation, entity>.
Handling Topological Structure. The basic topology of Con-
ceptNet can be regarded as a multi-relational graph, where nodes
indicate entities representing different concepts such as “Cat”, “Pet”
etc. and edges indicate relations such as “IsA” and “UsedFor” etc.
By combining two entities as well as the relation between them
together, it is possible to form a triplet capable of providing more
expressive information than separate entities. For instance, by com-
bining entity “Cat”, entity “Pet” and relation “UsedFor” together,
we can get triplet “Cat−UsedFor→Pet”. Entities, relations and
triplets are common elements shared across all types of KGs to date,
which are also adopted by TIVA-KG.
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Handling Multimodal Information. As for the ontology regard-
ing multimodal data, existing MMKGs such as Richpedia [35] use
different types of nodes to represent multimodal data, and utilize
different types of edges to connect different types of nodes. For
example, a relation of type “ImageOf” may originate from an image
node to an entity node while a relation of type “ImageSimilarity”
can connect two image nodes. However, this design fails to conduct
triplet grounding with multimodal information.

To enable triplet grounding with multimodal information, we or-
ganize multimodal information associated with each node or triplet
as attributes in TIVA-KG. In concrete, multimodal data associated
with entities will be stored as entity attributes, and multimodal data
associated with triplets will be stored as attributes of triples. There-
fore, our design for storing multimodal information in TIVA-KG
is able to concisely represent relational knowledge carried within
triplets in a natural and concise way. Figure 2 shows the basic
ontology of TIVA-KG.

3.3 Statistics and Visualizations

TIVA-KG consists of 440K entities and 1.3M triples, i.e., 443,580
entities and 1,382,358 triples, with every entity reachable from
others to ensure good connectivity. In TIVA-KG, multimodal data
can associate with both entities and triplets, where each modality
has at most 5 data samples to be stored. Table 2, Table 3, Table 4
provide a detailed statistics for entities, triplets and top-10 entities
of the largest degree. Figure 3 demonstrates the percentage of each
relation type in TIVA-KG.

Table 2: Statistics of entities in TIVA-KG.

# entities covering the
corresponding modality

# data samples
in each modality

Audio 103,580 359,465
Image 340,225 1,695,688
Video 239,566 1,112,918

Table 3: Statistics of triplets in TIVA-KG.

# triplets covering the
corresponding modality

# data samples
in each modality

Audio 30,169 93,521
Image 223,998 1,117,389
Video 194,037 927,029

Figure 4 provides a visualization of subgraph with 30K entities
extracted from TIVA-KG.

4 CONSTRUCTION, STORAGE AND

ACCESSIBILITY

In this section, we explain the detailed process of constructing,
storing and accessing TIVA-KG to ease the utilization of TIVA-KG
in various tasks.

Figure 3: Percentage of each relation type in TIVA-KG.

Table 4: Top-10 entities of the largest degree.

Entity Degree Entity Degree

slang 14,137 organic compound 9282
us 11,452 chemistry 9258
zoology 10,332 archaic 9196
medicine 10,092 computing 8807
historical 9660 uk 8141

4.1 Constructing TIVA-KG

The constructing procedure for TIVA-KG mainly consists of three
steps: i) We extract a skeleton from ConceptNet as the basic topol-
ogy; ii) we associate multimodal data to entities and triplets within
the basic topology; iii) We transform the raw multimodal data into
latent features in vector form.

4.1.1 Basic Topology. We conduct a filtering procedure over Con-
ceptNet to obtain the basic topology suitable for associating multi-
modal information with entities and triplets, based on the following
rules.

(1) We conduct filtering based on language tags, only including
English entities as well as English triplets, and excluding
externalURL relation.

(2) Since there are weight attributes in ConceptNet, we improve
the data quality via dropping relations with weight smaller
than 1, which are usually noises or wasted data in the original
ConceptNet.

(3) We remove relations of certain types with ambiguous seman-
tic meaning, e.g., RelatedTo. Relation types that are KEPT in
TIVA-KG include IsA, PartOf, HasA, UsedFor, CapableOf,
HasProperty, MannerOf, MadeOf, ReceivesAction, At-
Location, Causes, HasSubevent, HasFirstSubevent, HasLast-
Subevent,HasPrereqisite,MotivatedByGoal, Obstruct-
edBy, Desires, CreatedBy, DistinctFrom, SymbolOf, De-
finedAs, LocatedNear, HasContext, SimilarTo, Causes-
Desire.

We conduct Breadth-First Search (BFS) to apply the above filter-
ing rules simultaneously, starting from the node "cat" and stopping
when no new neighbors are discovered by BFS anymore. During
the filtering process, those excluded entities and relations will be
ignored.
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Figure 4: Visualization of subgraph containing 30K entities extracted from TIVA-KG.

4.1.2 Association of Multimodal Data. We adopt the caption-based
approach [41] to conduct entity grounding and triplet grounding,
which is also used in the construction of some otherMMKGs [19, 24].
We pick one entity or triple, generate its natural language descrip-
tion, and then use the description to search images, GIF files, audio
clips on Google and Freesound. Given that some types of relations
aim to provide structural information, lacking explicit semantic
meaning suitable for associating multimodal data, we ignore the
following relation types when aligning multimodal data: IsA, Man-
nerOf, HasSubevent, HasFirstSubevent, HasLastSubevent,
HasPrereqisite, MotivatedByGoal, ObstructedBy, Desires,
DistinctFrom, SymbolOf, DefinedAs, HasContext, SimilarTo,
CausesDesire, NotDesires.

We employ the tool provided by ConceptNet to generate “la-
bels” for each entity, which can be used as the natural language
descriptions related to the corresponding entity directly. By further
combining relation type and the natural language descriptions of
its related entities, we are able to generate a textual description
for each triplet. For instance, the detailed rules to generate the
descriptions for “A−r→B” are as follows:

• “A B” if r is PartOf, HasProperty, AtLocation, or Cause.
• “A has B” if r is HasA.
• “A used for B” if r is UsedFor.
• “A can B” if r is CapableOf.
• “A is made of B” if r isMadeOf.
• “A can be B” if r is ReceivesAction.
• “A created by B” if r is CreatedBy.
• “A near B” if r is LocatedNear.

With the generated descriptions, we search data from other
modalities through various ways: i) For image modality, we search
on Google; ii) For video modality, we search on Google and specify
the data type as .gif ; iii) For audiomodality, we search on FreeSound.
For each modality of every single entity or triplet, at most 5 data
samples are retrieved, whose orders are determined according to
the ranking from Google or FreeSound. We observe that the textual
descriptions are generated based on semantic information of the
corresponding entities and triplets, therefore the resulting multi-
modal data will be naturally aligned together with no need for
further processing.

4.1.3 Latent Features. We provide preprocessed features in vector
form instead of raw multimodal data for the sake of copyright
issue and efficient storage at the time of writing. The features are
extracted and processed as follows.

• For text features, we provide word embeddings (i.e., seman-
tic vectors) for entities, which are inherited from Concept-
Net. These vectors, called ConceptNet Numberbatch [31], are
trained via combining textual and structural information
in ConceptNet, being able to provide vectors of the same
length no matter how many words an entity may actually
contain. We also keep all the original texts so that alternative
methods can still be used to extract textual features.

• For image features, we employ ResNet-101 [9] to obtain a
2048-dimension feature vector for every data sample within
each entity or triplet.

• For audio features, we adopt VGGish [10] for the processing
procedure where the raw audio is resampled and key frames
are chosen within certain intervals, resulting latent factors
of shape (x, 128) with x depending on raw audio duration
time.

• For video features, we utilize HCRN [16] for video feature
processing. First, the video is sampled into 8 clips with identi-
cal intervals, each of which containing 16 continuous frames.
Then these frames are separately fed into ResNet-101 to ob-
tain frame features, and 8 clips together are fed into ResnNet-
101 to get motion features.

In the end, we provide an example to better illustrate the con-
struction procedure. Taking the triple <Dog, CapableOf, Run> as
an example, it exists in the original ConceptNet. When we obtain
the basic topology from ConceptNet, it passes all filtering rules
and thus is included in TIVA-KG. Then we use a caption-based
approach to align multimodal knowledge to it. The generated nat-
ural language phrase is "dog can run", and this phrase is used to
search for images as well as videos on Google, and audio clips on
FreeSound. Finally, the obtained multimodal files are processed into
latent features.

4.2 Storing and Accessing TIVA-KG

Storing TIVA-KG. The basic topology and multimodal data of
TIVA-KG are stored in an independent manner. The Basic topology



MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Xin Wang et al.

can be used alone to regard TIVA-KG as a single modality general
KG, as well as be used jointly with multimodal data as a multimodal
general KG with four modalities.

TIVA-KG adopts a new way of representing topology for struc-
tural information and storing multimodal attribute (such as URI
link) for multimodal data. In concrete, we assign each entity or
triplet a unique ID and store entities and triplets in two separate
dictionaries, i.e., entity dictionary and triplet dictionary, which are
accessible through IDs. In the entity dictionary, each entity entry
records multimodal attributes as well as the IDs of triplets relevant
to this entity. In the triplet dictionary, each triplet entry records mul-
timodal attributes and the IDs of both entities in the corresponding
triplet. The recorded multimodal attributes are actually URI links
which can direct to the real corresponding multimodal data. We
remark that separating the storage of entity and triplet information
into two separate dictionaries may help to avoid storing redundant
information. Both of the entity dictionary and triplet dictionary data
are organized into single JSON files, which are straightforward to
use.

Following the URI links, one can reach TIVA-KG’s multimodal
data. Raw multimodal data is stored in the file system individually,
while latent features are organized into one HDF5 file, and both
share the same URI.
Accessing TIVA-KG. The files containing dictionaries and other
additional information such as structural embedding features and
multimodal features are now available online. It is necessary to
mention that many existing works represent the topology of KG
as Resource Description Framework (RDF) triplets, where a KG is
usually stored in a triple file. We find it simple to transform TIVA-
KG into triple files to be compatible with such prior codes. To do
so, we can traverse the triplet dictionary of TIVA-KG, and convert
each entry into a line in the triple file. To keep track of multimodal
information for the triplet, it is necessary to add an extra column in
the triple file so that the original triplet IDs are still accessible. This
transformation makes it easy to adapt existing codes to TIVA-KG.

5 QUADRUPLE EMBEDDING BASELINE

In this section, we discuss in detail the proposed QEB, a Quadruple
EmbeddingBaselinemodel which is able to fully exploit multimodal
knowledge of both entities and triplets.

5.1 Energy Functions

We denote a KG as G = (E,R,T), where E is the set of all entities,
R is the set of all relations, and T = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ E, 𝑟 ∈ R} is the
set of all triplets.

We adopt the common practice of translationmodels, e.g., TransE [3].
For a triplet (ℎ, 𝑟, 𝑡), we denote feature vectors related to head, rela-
tion and tail as ℎ, 𝑟 and 𝑡 , respectively, satisfying the translational
assumption ℎ + 𝑟 ≈ 𝑡 . This denotation is simple yet effective, capa-
ble of being implemented in many different ways via replacing the
three feature vectors with more alternative ones.

We define two types of embeddings for entities and relations:
structural embeddingsℎ𝐼𝑠 , 𝑟 𝐼𝑠 , 𝑡 𝐼𝑠 ∈ R𝑁 directly obtained fromTransE [3],
and multimodal embeddings ℎ𝐼𝑚, 𝑡 𝐼𝑚 ∈ R𝑀1 , 𝑟 𝐼𝑚 ∈ R𝑀2 , where 𝐼

refers to the input embeddings. Given that the embeddings come
from different spaces, we project them into a common latent space

through a multi-layer network, obtaining ℎ𝑠 , 𝑟𝑠 , 𝑡𝑠 , ℎ𝑚, 𝑟𝑚, 𝑡𝑚 ∈ R𝑃 ,
indicating structural representation of head (ℎ𝑠 ), relation (𝑟𝑠 ) and
tail (𝑡𝑠 ) as well as the multimodal representation of head (ℎ𝑚), re-
lation (𝑟𝑚) and tail (𝑡𝑚). Furthermore, given a triplet (ℎ, 𝑟, 𝑡), we
follow the common practice [21] to define three groups of energy
functions, i.e., i) Intra-Embedding Energy, ii) Inter-Embedding En-
ergy and iii) Complementary Energy.
Intra-Embedding Energy. By extending the structural energy
defined by the TransE approach, we define the intra-embedding
energy via calculating the distance between embedding vectors ob-
tained from either structural or multimodal information as follows,

𝐸𝑠 = | |ℎ𝑠 + 𝑟𝑠 − 𝑡𝑠 | |, 𝐸𝑚 = | |ℎ𝑚 + 𝑟𝑚 − 𝑡𝑚 | | .

Inter-Embedding Energy. Although the structural and multi-
modal input embeddings are required to share the same number
of dimensions, they are not guaranteed to share the same embed-
ding space. As such, we further define the inter-embedding energy,
through the six possible combinations across structural and multi-
modal embedding space as follows,
𝐸𝑀𝑆𝑀 = | |ℎ𝑚+𝑟𝑠 −𝑡𝑚 | |, 𝐸𝑀𝑆𝑆 = | |ℎ𝑚+𝑟𝑠 −𝑡𝑠 | |, 𝐸𝑆𝑆𝑀 = | |ℎ𝑠+𝑟𝑠 −𝑡𝑚 | |,

𝐸𝑆𝑀𝑆 = | |ℎ𝑠+𝑟𝑚−𝑡𝑠 | |, 𝐸𝑆𝑀𝑀 = | |ℎ𝑠+𝑟𝑚−𝑡𝑚 | |, 𝐸𝑀𝑀𝑆 = | |ℎ𝑚+𝑟𝑚−𝑡𝑠 | | .
These functions indicate i) the relation corresponding to a transla-
tion operation between the multimodal (structural) representation
of the head and tail entities once projected into the structural (mul-
timodal) space (i.e., MSM and SMS); and ii) the constraint [36] of
ensuring the structural and the multimodal representations to be
learned in the same space (MSS, SSM, SMM, MMS).
Complementary Energy.Besides𝐸𝑀𝑆𝑀 and𝐸𝑆𝑀𝑆 of Inter-Embedding
Energy, we enforce the constraint additionally on the summation
of multimodal and structural embeddings as the complementary
energy to improve robustness as follows,

𝐸𝐶𝑆 = | | (ℎ𝑚 + ℎ𝑠 ) + 𝑟𝑠 − (𝑡𝑚 + 𝑡𝑠 ) | |,

𝐸𝐶𝑀 = | | (ℎ𝑚 + ℎ𝑠 ) + 𝑟𝑚 − (𝑡𝑚 + 𝑡𝑠 ) | | .

Putting All Together. The overall energy for a triplet with two
end nodes (i.e., head ℎ and tail 𝑡 ) and one relation 𝑟 can be defined
as the sum of intra-embedding energy, inter-embedding energy and
complementary energy in the following,

𝐸 (ℎ, 𝑟, 𝑡 ) = 𝐸𝑠 + 𝐸𝑚 + 𝐸𝐶𝑆 + 𝐸𝐶𝑀 + 𝐸𝑀𝑆𝑀 + 𝐸𝑆𝑀𝑆

+ 𝐸𝑀𝑆𝑆 + 𝐸𝑆𝑆𝑀 + 𝐸𝑆𝑀𝑀 , +𝐸𝑀𝑀𝑆 . (1)

5.2 Objective Function

Following the common practice [21], the model is trained to ensure
that the overall energy of positive sample 𝐸 (ℎ, 𝑟, 𝑡) or 𝐸 (𝑡,−𝑟, ℎ)
(−𝑟 refers to the reversed relation) is minimized while the overall
energy of negative sample 𝐸 (ℎ, 𝑟, 𝑡 ′) or 𝐸 (𝑡,−𝑟, ℎ′) (𝑡 ′ and ℎ′ refer
to negative tail node and head node respectively) is maximized
through a margin-based ranking loss between the overall energies
of positive and negative samples.

𝐿head =
∑︁

(ℎ,𝑟,𝑡 ) ∈𝑇

∑︁
(ℎ,𝑟,𝑡 ′ ) ∈𝑇 ′

tail
𝑚𝑎𝑥 (𝛾 + 𝐸 (ℎ, 𝑟, 𝑡 ) − 𝐸 (ℎ, 𝑟, 𝑡 ′ ), 0),

𝐿tail =
∑︁

(ℎ,𝑟,𝑡 ) ∈𝑇

∑︁
(ℎ′,𝑟 ,𝑡 ) ∈𝑇 ′

head
𝑚𝑎𝑥 (𝛾 + 𝐸 (𝑡, −𝑟, ℎ) − 𝐸 (𝑡, −𝑟, ℎ′ ), 0),

where 𝛾 serves as a preset controlling parameter determining the
energy differences between positive samples and negative samples.
The final goal of QEB whose neural network architecture is shown
in Figure 5 will be minimizing the total loss 𝐿total as follows,

𝐿total = 𝐿head + 𝐿tail .
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Figure 5: Overview of the neural network architecture of our proposed QEB model.

6 EXPERIMENTS

In this section, we conduct extensive experiments via comparing the
performances of different state-of-the-art approaches as well as the
proposed QEB model over our TIVA-KG, covering various scenarios
ranging from unimodal to quadruple-modal settings. Necessary
information for reproducing our results is available at https://github.
com/Darkbblue/tiva-kg.

6.1 Experimental Settings

Task. We choose link prediction, the most widely adopted task for
KG, to conduct experiments on. Same as other KGs, our TIVA-KG is
composed of triplets (head, relation, tail) where the link prediction
task aims to accurately predict tail given head and relation or predict
head given tail and relation. During the training procedure, the
ground truth head or tail normally will be replaced at random to
generate negative samples.

Datasets. Following the common practice of existing works on
large KGs, we extract a sub-graph from TIVA-KG as our datasets
for experiments. The extracted sub-graph includes every entity
and triplet within three hops from the entity “cat”, containing 10K
entities and 24K triplets. These triples are divided into a 20K training
set, a 2K validation set and a 2K test set.

Comparative Models. We first examine the performances of four
state-of-the-art models, TransE [3], TransD [11], DistMult [37] and
NTN [30], to see if they can benefit from the quadruple modalities
introduced by TIVA-KG. Given that these state-of-the-art unimodal
approaches are designed to process only structural embeddings, we
concatenate structural embeddings and multimodal embeddings
together, transform them through a Multilayer Perceptron (MLP),
and then feed the embeddings output via MLP into the models. We
further examine the multimodal translation-based approach [21],
with the same best hyperparameters reported in the work, as well
as the same way of concatenating features from different modalities
together. Finally, we examine our proposed QEB model, which is
designed specifically for handling quadruple modalities in TIVA-
KG.

EvaluationMetrics.We employ Hits@n and mean reciprocal rank
(MRR) to evaluate the model performances for link prediction on
TIVA-KG. Hits@n measures the ability to discover the ground truth
result within top-n candidates, and MRR measures the average
reciprocal of the rank of the ground truth in the predicted results.
Larger Hits@n and MRR values indicate better performances.
Multimodal Embeddings. Different combinations of multimodal
embeddings (i.e., text, text-image, text-image-video, text-image-
video-audio) are employed to test the effects of utilizing multiple
modalities. To combine multiple modalities together, we flatten and
concatenate their features. They are concatenated in the order of
text, image, video and audio, to provide the multimodal embeddings.
If there are multiple instances for one modality, we simply use the
first one and discard the others.

6.2 Experimental Results

We use “t, i, v, a” to denote text, image, video, audio, respectively,
e.g., “tiv” means the tested model utilizes information from text,
image and video modalities. “Unimodal” indicates that only the
topological structure is taken into consideration.
Unimodal Models. The experimental results of four state-of-the-
art unimodal models are shown in Table 5. We observe that tak-
ing multimodal knowledge into account can significantly improve
model performances, because information from multiple modalities
becomes available for utilization. However, these models cannot
benefit from combining multiple modalities. For example, DistMult
reaches the best performance at Hits@10 when considering all the
four modalities, while achieves the best performances at Hit@1
and Hit@3 with only text and image modalities being taken into
account. TransD and NTN even perform the best when only em-
ploying the text modality. Moreover, even the best results produced
by TransE and DistMult are less than 50% at Hits@10, which shows
that unimodal methods can not be naturally extended to multi-
modal scenarios, thus requiring further model designs to handle
multimodal knowledge.
Multimodal Models. Table 6 and Table 7 demonstrate the experi-
mental results of multimodal models, i.e., multimodal translation-
based approach [21] and our proposed QEB model, in terms of

https://github.com/Darkbblue/tiva-kg
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Table 5: Results of unimodal models on link prediction. Re-

sults shown here are the average of head and tail predictions.

Model Setting Hits@1 Hits@3 Hits@10 MRR

TransE

unimodal 12.7 29.325 44.025 22.7
t 43.65 46.575 47.9 45.4
ti 38.775 43.25 45.4 41.4
tiv 12.55 26.05 34.225 20.5
tiva 0.0 0.225 0.925 0.41

DistMult

unimodal 27.575 34.35 34.95 31.0
t 23.4 46.85 49.85 35.7
ti 45.175 49.35 49.8 47.3

tiv 44.15 49.225 49.9 46.7
tiva 18.775 45.4 49.925 31.9

TransD

unimodal 4.45 24.825 40.7 16.5
t 44.95 47.825 48.55 46.5
ti 41.6 44.625 46.25 43.4
tiv 19.45 45.0 49.925 32.2
tiva 18.775 45.4 49.925 32.2

NTN

unimodal 30.75 44.82 47.325 37.7
t 44.6 47.975 49.225 46.5
ti 35.65 48.35 49.2 41.9
tiv 37.15 48.35 49.375 42.8
tiva 7.12 10.35 10.725 8.7

Table 6: Results of multimodal models on (h,r,?) link predic-

tion.

Model Setting Hits@1 Hits@3 Hits@10 MRR

Multimodal
Translation [21]

ti 60.15 86.25 94.45 73.95
tiv 59.3 85.4 95.5 73.04
tiva 34.65 62.35 80.6 51.00
tiva-lstm 66.9 89.6 96.65 78.79

QEB (Ours)

ti 80.6 92.55 97.1 87.00
tiv 80.95 93.6 97.25 87.72

tiva 62.8 79.8 91.45 72.93
tiva-lstm 80.4 93.9 97.6 87.42

Table 7: Results of multimodal models on (?,r,t) link predic-

tion.

Model Setting Hits@1 Hits@3 Hits@10 MRR

Multimodal
Translation [21]

ti 29.25 48.35 58.35 39.96
tiv 40.8 65.2 74.25 54.32
tiva 27.55 36.35 57.1 36.44
tiva-lstm 59.3 75.45 84.15 68.26

QEB (Ours)

ti 45.1 59.65 73.5 55.05
tiv 41.3 66.85 80.55 56.02
tiva 10.0 16.65 42.4 19.01
tiva-lstm 51.8 68.4 79.1 61.13

several settings for Hit@n and MRR. In addition to the “tiva” set-
ting which utilizes audio features through simply padding or slicing
them into representation with pre-defined length before flatten-
ing, we introduce an alternative setting “tiva-lstm” such that the
audio modality can contribute to achieving better performances.
In concrete, “tiva-lstm” processes audio embedding with an LSTM
layer and an MLP layer, which provides better and more consistent
results than “tiva” as shown in both Table 6 and Table 7.

It is obvious that both multimodal approaches perform much bet-
ter than the unimodal methods shown in Table 5, which validates
the capability of multimodal approaches in successfully capturing
the interactions between different modalities to reach better per-
formance. Empirical results under “ti”, “tiv”, “tiva-lstm” settings
demonstrate a general trend of performance increase upon consid-
ering more modalities, which further proves the benefits of incor-
porating multimodal information on KG.

Predict (h,r,?) v.s. Predict (?,r,t). Through comparing the model
performances in Table 6 and Table 7, we observe that predicting
(?,r,t) is definitely more difficult. More importantly, the increase
of “tiva-lstm” over “ti” for predicting (h,r,?), which is 0.48% of the
original MRR. is less significant than that for predicting (?,r,t), which
is 11.05% of the original MRR. This not only demonstrates the model
performance boost brought by quadruple modalities, but also shows
that incorporating information from multiple modalities may bring
more benefits for more difficult tasks.

QEB v.s. Multimodal Translation [21]. Multimodal Transla-
tion [21] can be regarded as a special case of our QEB model with
only five energy terms (i.e., 𝐸𝑠 , 𝐸𝑀𝑆𝑆 , 𝐸𝑆𝑆𝑀 , 𝐸𝑀𝑆𝑀 , 𝐸𝐶𝑆 ) and with-
out the support to triplet grounding. On the one hand, Table 6
shows that QEB generally outperforms Multimodal Translation un-
der all the four settings for (h,r,?) link prediction task. On the other
hand, Table 7 implies that QEB performs better than Multimodal
Translation under “ti” and “tiv” settings while worse under “tiva”
and “tiva-lstm” settings for (?,r,t) link prediction task. The differ-
ence of performance gain on the two tasks indicates that different
tasks on TIVA-KG may require contributions from different energy
functions.

We conclude that quadruple modalities as well as triplet ground-
ing can benefit link prediction task on Multimodal KGs, demon-
strating that the two novel features of TIVA-KG can succeed in
improving model performances for link prediction.

7 CONCLUSIONS AND FUTUREWORKS

We believe TIVA-KG has a great potential to promote the utilization
of information from multiple modalities for knowledge mining on
KGs. Although we propose QEB, a baseline model for TIVA-KG in
this paper, what and how information from different modalities can
be more elegantly combined to improve link prediction accuracy re-
main an interesting yet challenging problem. Furthermore, whether
it is possible to employ TIVA-KG for other downstream tasks such
as visual question answering, temporal sentence localization, mul-
timedia search and recommendation to achieve performance boost
also deserves future investigations.
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